Update to Heavy-Duty Engine Emission Conversion Factors

(M6.HDE.002, M6.HDE.004)

Terry P. Newell

US EPA Office of Mobile Sources

Ill Heavy-Duty Emissions in MOBILE6

- Updated emission rates (g/bhp-hr) for MY 1988-2004+
- Conversion factors used to transform g/bhp-hr to g/mi rates

II Update of Emission Rates

- Certification data for MY 1988-1995 HDEs
- Weighted by sales and rated hp to obtain average for each fuel type and (for diesels) weight class
- Both zero-mile levels and deterioration rates updated

MUpdate of Emission Rates - Results (HDGE)

- HC: Much lower ZMLs and DRs
- CO: Lower ZMLs (except MY1989), lower DRs
- NOx: Lower ZMLs, DRs slightly reduced

III Update of Emission Rates - Results (HDDE)

- HC: Much lower ZMLs; DRs very low (but were zero)
- CO: Much lower ZMLs and DRs
- NOx: Lower ZMLs, DRs very low (but were zero)

Ill What are "conversion factors"

- Units of bhp-hr/mi
- Used to convert from regulated levels (engine tests) to in-use levels (vehicle levels in use)
- Distinct for gas/diesel, for each subclass, for buses

III Update range

- Did not revise CFs for model years (MY) 1986 or earlier
- Updated CFs for MY 1987-1996
- MY 1996 values used for future model years

III Basic formula

- Same methodology used for earlier versions of MOBILE (Machiele, 1987; MVMA, 1982)
- Conversion factor (bhp-hr/mi) =
 \[
 \frac{Fuel density (lb/gal)}{BSFC (lb/hp-hr)*FE(mi/gal)}\]

II Difference in MOBILE6 use of HDE CFs

- MOBILE5 used single conversion factor for HDGEs and for HDDEs, weighted by CFs for various weight classes
- MOBILE6 will use CFs specific to gas and diesel HDEs by weight class (IIb thru VIIIb), and for buses (gas-school; diesel-transit, intercity, school)

Ill Sources of data used

- Average truck fuel economy, nonengine FE improvements: 1992 Truck Inventory and Use Survey (TIUS)
- Transit & intercity bus fuel economy: NREL study, APTA "1995 Transit Passenger Vehicle Fleet Inventory" and "1996 Transit Fact Book"

Ill Sources of data used

- School bus fuel economy: National Transportation Statistics 1997, School Bus Fleet magazine
- Gasoline transit & intercity buses: previous work (Machiele, 1987)
- Fuel density data, for summer & winter seasons 1987-1996: NIPER Petroleum Product Surveys

Ill Sources of data used

- BSFC data requested from 8 mfrs (6 supplied); estimates for others based on hp, specifications, engineering judgment
- Sales data from EPA used to weight BSFC within classes

III Methodology

- Curve fits developed for FE as function (model year)
- For buses, intercity FE estimated from transit bus FE using data from Central Business District (CBD) and Commuter (COM) cycles

M Non-Engine Fuel Economy Improvements

- Includes aerodymamic improvements, drive train optimization, radial tires, speed control, and fan drives
- Benefits of such devices mostly seen on longer, higher speed trips
- Assumed to have reached maximum penetration in fleet

III Comparison to MOBILE5 (data used)

- Higher use of non-engine FE improvements in most cases
- BSFC generally lower than used in MOBILE5
- Fuel economy generally higher than used in MOBILE5
- Fuel densities very similar to those used in MOBILE

MMOBILE6 vs MOBILE5 Conversion Factors (HDGEs)

- New CFs higher than MOBILE5 for Class IIb (8500-10,000 lb)
- New CFs lower for Classes III thru VIII

II MOBILE6 vs MOBILE5 Conversion Factors (HDDEs)

- Slightly higher than MOBILE5 for Classes IIb thru VII
- Lower for Class VIIIa (33,001-60,000 lb)
- Very similar for Class VIIIb (60,001+ lb)
 - slightly higher for MY1987-92, slightly lower for MY 1993+

III MOBILE6 vs MOBILE5 Conversion Factors (Buses)

- Higher for all diesel buses (transit, intercity, and school)
- Higher for gasoline school buses

III Comments on HDE Conversion Factor Reports

- ATA said that we must await 1997 TIUS
 - assumed that newer data will show more improvements, result in lower CFs
- 1997 TIUS still not available as of now

III Summary

- This work updates previous analyses using same methodology with newer data
- CFs developed this way likely best for NOx emissions
- Pollutant-specific conversion factors require data that only recently is being collected